
Convergence of
AIX and 4.3BSD

Charles H. Sauer
Kathy A. Bohrer

Tom Lang
Conrad Minshail
Gary L. Owens

Kris Solem
Bruce J. Walker

IBM AES
•75/802, 11400 Burnet Road

Austin, TX 78758
(512) 823-3692

Unrornm 1989. Sar Francisco 22̂

ABSTRACT

A I X siarled with a number of BSD fealures, e.g., 4.2 signals and concurrent
g r o u p s [l] . Over time, additional features were added. Rated on experience with these
features, and experience with fDM/4.3 for the RT, it appeared Hint fairly slrict BSD
compatibility could be achieved. This paper describes methodology and decisions made
in defining a convergence of BSD 4.3 and A I X .

/. INTRODUCTION

A I X is derived from System V , with unique enhancements in virtual memory support, memory
mapped files, dynamic configuration, distributed system support and oilier areas[11, A I X started with
a number of BSD features, e.g., 4.2 signals and concurrent groups. Over t ime, additional features
associated with BSD, such as ply's , select, sockets, sendmail, and symbolic links were added. Based on
this experience, and experience with I B M / 4 . 3 for the RT, it appeared lhai fairly strict BSD
compatibili ty could be achieved, and the authors and others set nut to define such compatibility. This
paper describes methodology and decisions made in defining a convergence of BSD 4.3 and A I X . This
convergence wi l l be reflected in the A I X Family productsj4] and the version of A I X to be provided to
the Open Software Foundation.

The work began with evaluating A I X / R T 2.1.2 using the test suites prepared for I B M / 4 . 3 . A
lengthy report describing that evaluation was prepared and reviewed. Though many missing features
and problem areas were identified, no fundamental problems were round in the evaluation.
Subsequently, a working group was convened to plan and define the convergence. After several week
long working meetings, most of the known problems had been addressed. Since then, the specifics of
the convergence have been iteratively defined and specified in draft technical reference
documentation, which is to become the A I X Operating System Technical Reference and Hie A I X
Operating System Commands Reference[2,3). Summary matrices, Indicating presence or absence of
specific commands, system calls and library routines, are available in ilie A I X Family Definition
Overview [4 | .

2. GOALS/PRIORITIES

Inevitably, in convergence work such as this, there wi l l be a number or goals, conflicts amongst
those goals and prioritizations which can be used for resolving the conflicts. Following subsections
describe the goals of this work, in priority order.

* MX is a trademark of International Business Machines Corporation.
Address correspondence to Charles I I . Sauer, I DM Advanced Engineering Sysirm*. I I40r> nnrnet Road, Austin,
TX 78758. email: @cs.ulexas.edu:sauertgibmaui.uucp.

2.1. POSIX and FIPS Compliance

During the bulk of the work effort, P1003.1 was still evolving, as evidenced hy the continuing
revision of draft 12. Several of the participants in the BSD convergence effort were also active in the
P1003.1 committee and other POSIX committees, so we were able to try to anticipate where Ihings
were stable and where things were changing. In spite of trying to track a moving target, P1f>03.l
compliance was considered mandatory. In some cases important BSD functions, e.g., job control,
were considered to have been superseded by P1003.1 definitions, anil only the P1003.1 dcfinilions
were provided.

The other P1003 efforts were clearly less well defined than P1003.1. Occasionally we would try
to determine how a particular committee, say P1003.2, was dealing wiih a particular issue, bul in
general we did not try to anticipate how the other documents would lurn out.

Also during the effort, we were anticipating what additional specifications would he included in
the planned FIPS corresponding to P1003.1. In some cases, the anticipated specifications were vised to
resolve conflicts between BSD and System V thai were not resolved in P1003.1. For example, we
decided to make chown() a privileged operation on this basis.

2.2. Base SVID Functionality

Given the above assumptions with respect to PI003.1 and the anticipated FIPS, it seemed
posiible to preserve the remainder of the functionality in the BA_OS and B A _ I J f l sections of the
SVIP without significantly compromising BSD compatibility. Given the importance of this
functionality, both in terms of compatibility and licensing issues, we considered preservation of this
functionality mandatory. We would also refer to other SVID sections in resolving other issues, hut
compatibility with those sections was not as high a priority as the other goals listed below, particularly
BSD compatibility.

2.3. BSD 4.3 Compatibility/Completeness

This was the real justification for the effort. We wanted in make ihc resuliing system feel like a
BSD system for both end users and programmers. The assertion was made that the result of ilie effort
would be "99.44% compatible with BSD 4.3," though assertions were nlso made I hat the ".56%" was
spent more than once! 4.3 compatibility was defined to include:

1. Inclusion, and compatibility with, the commands, system calls and library routines as defined in
chapters 1, 2. 3, and 7 of the BSD manuals[5,6]. (See below for discussion of other chapters).

2. Compatibility with important, bul undocumented, behavior of USD functions. These
undocumented features were either known from experience or determined by examining code.
(In many cases we felt i l necessary to diff BSD source code ngainsi existing A I X source. Where
the source base was radically different, these diffs were of little value, bin in a number or cases
these dirts were usable to identity where changes/additions should he made.) We have chosen to
document these characteristics in ihe A I X reference manuals.

3. Inclusion, and compatibility with, important functionality added in IBM/4.3 .

In many cases ihe BSD manuals state that functions nrc obsolete. Wc usually resisted the
temptation to take the manuals literally and included functions that arc nominally obsolete. In a few
cases we did choose to leave out functions that were considered to really be obsoleie. Functions

224 usr/CfOuo

documented in the BSD manuals, but not supported by IBM/4 .3 were normally not included in ihe
convergence.

2.4. Compatibility with Existing AIX Interfaces

For this lo be a true convergence, we could not afford to significantly break existing A I X
functionality; both the "99.44%" and the " .56%" assertions were made in regard lo A I X compatibility
as wel l . In many cases, there were no real conflicts, but redundancy was required lo provide both BSD
compatibility and A I X compatibility. For example, A I X already had a " i n " command which provides
the functions of bolh Ihe BSD telnet and tn3270 commands. We chose lo add llie lelnet and In3270
command interfaces, but keep Ihe in command interface as well . In ihe cases where Ihere were serious
conflicts, we had to compromise compatibility with either BSD or A I X . Irying to assess imporiance of
compatibility in either direction.

2.5. Minimizing Redundancy

In order to achieve ihe level of compatibility descrihed ahovo, redundancy is inevitable.
However, redundancy is undesirable for several reasons:

1 . New users wi l l have difficulty deciding which commands and interfaces to use. What is the
"preferred" or "strategic" interface?

2 . Programmers wi l l similarly have difficulty deciding whai facilities to exploit and which ones to
avoid. This is exacerbated by questions of portability to/from n n n - A I X systems.

3. Unnecessary maintenance effort is required, lhat could he belter spent providing enhanced
function.

For these and other reasons, we endeavored to minimize redundancy in Ihe convergence.
Except in cases where redundancy seemed inescapable, conflicts were resolved lo provide a single
merged definit ion of system call, library and command interfaces. Fvcn where redundancy seemed
inescapable, we designated one of the redundant functions the "preferred" version, and ensured lhal i l
include all of the capabilities of the other versions, though typically wi lh different syntax. Typically,
the source code for this preferred version can also be used to present Ihe alternate interfaces, as well .
For example, we use the same source code for the tn . lelnei and tn327[) commands.

2.6. Implementation Dependencies!Administrative I'acilities

In a number of areas, the implementation in the 4.3 kernel shows through al the kernel
interfaces to an extent we fell was unnecessary, polenlially precluding incorporation of new
technologies. For example, we were in the midsl of developing a new file system implementation that
provides integration with virtual memory and recovery characteristics noi present in the 4.3 file
system; we could not allow convergence to preclude file system implementations other than the one
supported by ihe 4.3 kernel. Though we preserve the system call and library interfaces associated wi lh
file access in 4.3, we do not, for example, preserve super block and inode structures specified in
chapter 5 of the BSD Programmer's Manual.

I n general, we did not feel committed to convergence of system administration facilities in terms
of preservation of command interfaces. However, we were commii lcd lo providing adminislrative
capabilities present in BSD that were not previously present In A I X . Where nominally administrative

interfaces (i .e . , those in Chapter 8 of the BSD System Manager's Manual 17]) were likciy to he used hy
end users on workstations, e.g., the ifconfig command, we provided those interfaces with F1SD
compatible syntax and semantics.

3. SYSTEM CALLS AND LIBRARY ROUTINES

Con/lids/Redundancies. The first fundamental issue we had lo dent wi lh was how we were going
lo handle conflicts and redundancies between BSD programming interfaces and existing A I X
interfaces. We considered a variety of relatively complex approaches, bin decided on a very simple one
primarily to enforce discipline in defining a converged interface; if there was a sophisticated
mechanism for retaining conflicting interfaces, then that mechanism would be used too freely. Rather,
we wanted a mechanism of last resort, something usable when all else failed, but something not
sufficiently attractive to be used frequently or pervasively.

We necessarily used different, but related mechanisms to deal with redundancy in function calls
(including system calls), preprocessor definitions and commands. For function calls, we decided to
have two auxiliary libraries, libbsd and libusg. In general, the preferred implementation of ihe function
would be provided in libc, and an alternate implementation in either libbsd or Ithusg.

For example, in existing A I X and System V, the nice() function assumes nonnegative values for
its argument, while the (obsolete) BSD nice() function assumes values from -20 to 20. nice()
following the System V convention is in libc, and nice() following ihe USD convention is in lihhsd. In
BSD, nice() is superseded by setpriority(), and the BSD definiiion of sctpriorityO is provided in the
new libc in A I X .

In some cases, 1003.1 had made a clear choice of a preferred function, e.g., getcwdf), and a
redundant BSD routine, geiwdfj in Ihis case, was left in libbsd.

Functions which were not strict implementations of their traditional semantics would also be
included in libusg or libbsd. For example, A I X supports a paging oriented fork() call which does nol
guarantee the parent/child precedence assumptions of the the BSD vfork() system call . A version of
vforkQ which simply invokes fork() is included in libbsd. Similarly, Mock() as in BSD and locking
provided by fcntlf) in System V differ in regards lo release of locks on the last close of a multiply
opened file or the first close, respectively. f lock() is provided in libbsd, but it is implemenied as an
invocation of fcn t l () .

As intended, both libusg and libbsd have very few elemenls. So far, we have placed no routines
in libusg. libbsd includes f lockQ, fopenQ, f l ime () , getwdQ, niceQ, rc_comp() , re_exec(), signal(),
sleepQ, val loc() , vfork() , vhangup(), v l imi t f) and vtimes().

BSD Environment Variable. As part of our compatibility objectives, we wanted programmers to
be able to lake programs developed on 4.3BSD, bring Ihe source to an A I X machine and simply type
"make" and have the progTam compile properly. With some routines present only in lihhsd or
redundantly present in libc and libbsd, we needed a mechanism to give preference lo libbsd wilhoul
having lo change makefiles. We chose to modify cc to recognize an cnvironmenl variable BSD. I f cc
finds this variable defined, then it w i l l include libbsd in ihe Id search order prior to libc. Also, i f
environment variable BSD is defined, cc wi l l define _BSD for cpp. Boih of these effecls can be
overridden by explicit use of -U_BSD with the cc command.

Include Files. Another major area of redundancy and potential conflict is in the /usr/include
hierarchy, fn A I X 2, BSD compatibility in this area was originally addressed hy a /usr/include/bsd

226 ••usr/grouo

sub hierarchy. This approach clearly requires makefile modifications (inclusion of -I/usr/includo/bsd)
and thus is undesirable. A I X 2.2.1 began merging the DSD Include files into the standard hierarchy.
Completion of this merging is part of the convergence definition. Where files and snbhierarchics did
not previously exist and they provide new definitions, it is straightforward lo add Ihe BSD files and
directories. However, there are several cases requiring careful merging:

1. The same file, e.g., <sys/iocll.h>, already existed in both A I X and USD. In ihe case of ioc l l .h ,
the old A I X iocl l .h was nearly empty and the new file is just the concatonaiion of the old A I X
file and the BSD file.

2. Related, but different items are defined in different files. For example, ihe "whence" constants
SEEK_SET, SEEK CUR and SF.EK_END in old A I X <unisld.h> correspond to !._SF.T,
L_INCR and L ,_XTND in BSD <sys/file.h>. In this case, ihere is no conflict, and the definitions
can remain in both places. However, to encourage use of a single set of constants (Ihe ones
specified in 1003.1), the BSD constants are only defined if Ihe _BSD preprocessor variahle is
defined.

3. The same ilem is in different files. For example, NGROUPS is defined in <grp.h> in old A I X ,
bul in BSD it is in <sys/param.h>. There is little else in <grp.h>, so <sys/param.h> includes
<grp.h> in the converged definition.

Again, we lei POSIX and ANSI X3J11 take precedence over our prior conventions and BSD
conventions.

Errnos. We did nol fee! constrained lo provide the same mapping of errno symbols lo numeric
values as in I B M / 4 . 3 . However, where the IBM/4 .3 values did not conflict we A I X / R T assignments,
we preserved the 4.3 assignments. Most of the difficult questions were resolving use of specific symbols
where the two systems used different symbols for the same error. For example, A I X / R T used F A O A I N
where 4.3 used E W O U L D B L O C K . Given the POSIX usage of F A O A I N , we stayed with E A G A I N in
these situations. However, E W O U L D B L O C K is defined, to a unique value, so ihai programs which
reference it , including switch statement references, wi l l compile properly.

Signals. By A I X 2.2, all of the (traditionally bounded hy 31) signal numbers had been used
except for 5 reserved for future implementation of the BSD job control signals. However, there were
other BSD signals nol yet supported. For the RT implementation of A I X . we couldn't change the
numbering without losing object code compatibility. However. Tor the PS/2 and 370 implementations
which were not yet externally available, we could redefine the numbering. Also, the 1003.1 signal
definitions allow for more lhan 31 signals. We agreed upon a new numbering, for implementations
where we could change the numbering. For the first 25 numbers, we preserved Ihe traditional BSD
numbering. Most of the remaining numbers under 31 were used for signals judged likely to he masked
(using pre-1003.1 interfaces), with two numbers lefi reserved, and llie remaining signals were given
numbers above 31 .

Redundant Routines. There are a few cases where A I X and BSD had routines with identical
function, but different names. The classical examples are indcx() ' r indcx() and s i rchr() ' s (r rchr() .
Much code designed to be portable from one environment to the oilier wi l l try to manage these with
#define's, but this is nol appropriate for symbolic debugging. In some cases we chose to provide the
BSD function in libbsd. in others, e.g.. the above examples, to provide ihcse as alternate entry points
in the libc implementations of the prior A I X function, e.g., index() as nn alternate entry point in
i t r c h r Q .

jr'Fonim '989 San F-ancsco

"Orange Book" Security. AIX 2.2.1 on Ihe RT is designed In he ccrlifiablc ol a C2 level. In some
questions, perceived security issues forced the decision. For example, a tradilional f)SD vs. System V
question has been whether chownfj is restricted lo processes with appropriate privileges. 1003.1 leaves
the question open, to be selected by _POSIX_CHOWN_RESTRIcn : ,D. We chose to make chownfj
privileged, as we understood the interim FIPS would also do. We perceived minor security problems
wi lh vhangupfj and provided a replacement call which could be invoked by Ihe libbsd vhangup().

Other Semantic Issues. There are a number of areas where RSI) provides upwardly compatible
semantic extensions from A I X . For example, BSD reslricls deletion of files in directories where (he
"sticky b i t " is set. We chose to support these semanlics. In other areas, there are conflicts of
semantics, e.g., whether a created file should lake on the group associated wi lh the creating process, as
in existing AIX, or the directory, as in BSD. In this particular example, AT&T and Sun had a good
convention for resolving the conflict: where a directory has the scl-gid hil set, then the BSD semantics
are used; otherwise the group id of the process is used[8]. We adopted this convention, also.

4. USER COMMANDS

Conflict Resolution. As with function calls, we wanted a simple, last resort, mechanism for
resolving conflicts. We chose a path based mechanism. Where there is n single version of a command,
that command wil l typically actually reside in /usr/bin. For those commands that have a single version
(e.g., v i) , commands which traditionally appeared in /usr/uch in USD (e.g., /usr/hin/vi) , there are
symbolic links from the traditional path to /usr/bin (e.g., In -s /usr/hln/vi /usr/uch). For those
commands wi lh conflicts thai we could not resolve (e.g., install), there is a superset version of the
command that provides all of the functions (but nol the syntax) of boih versions. Thai superscl version
goes in /usg (e.g., /usg/install). A strictly BSD compaiihle version goes in /usr/uch (e.g.,
/usr/ucb/install). By default the system is provided with symbolic links from the /usg version to /usr/bin
(or wherever is appropriate, e.g., /etc/insiall) . However, there is a script provided lo reverse the sense
of the links, i .e . , make the /usr/ucb version the one that is symbolically linked inio the presumed
default path, and to remove the links entirely (for evaluating dependencies). On the order of 10
commands have these redundant versions, some of which arc described below.

Scope. Our intention was to provide all commands, but we had to define whal " a l l " meant. For
the most part we left out the games and user contributed commands except where they had been
previously with A I X and/or I B M / 4 . 3 , e.g., the Rand M H package and the "notes" package are
provided. In some cases we considered a command to be truly obsolete or machine specific and
omitted i t . In other cases we considered a command nol likely to be used by end users and rcdundanl
with other commands. In many of these cases we decided to provide a shcil script in place of Ihe
command that would echo a message suggesting another command. For example, we do nol provide
Ihe I B M / 4 . 3 " M A K F . D E V " command for adding special files, bul there is a script version of
M A K E D E V which suggests use of Ihe "devices" command.

Name Conflicts. In some cases the same command name is used for entirely different functions.
For example, "rsh" was used for "restricted shell" in A I X / R T prior lo 2 . 2 . 1 , while "rsh" is used for
"remote shell" in BSD. When the remoie shell function was added in A I X 2.2, it was named remsh.
Slarting with 2 . 2 . 1 . the restricted shell is named "Rsh" and the remole shell is named "rsh" but also
has the link "remsh". Since the restricted shell w i l l primarily be invoked by /etc/passwd entries, il was
agreed that it could be reasonably renamed. We encountered a few other cases like ihis, and were
generally able to agree on renaming of one of ihe commands without perceived problems.

Flag Conflicts. Unfortunately, there were many commands where the flags were in conflict
between A I X and BSD. In Ihe majority of these cases, we were able to agree that one Bag

228 /usf/grouD

interpretation was sufficiently unimportant that we could just change the Hag used. One of the primary
criteria was to avoid breaking shell scripts (and programs which exec commands) as far as wo could
judge the impacts of flag conflicts. For example, the -s flag on cat means that cat should be silent about
missing files in the old A I X version, and means that cat should squeeze out blank lines in ihe BSD
version. In this case we retained the BSD meaning and provided a - q (for "quiet") for the old A I X
function, since it was not present in the BSD command. I f - f l had nol been 'supporlcd in the BSD
sense, some programs, e.g., the man command, would have noticeably different results.

Other Syntactic Conflicts. In the tr command the Bags were not in conflict , but ihe notation used
for specifying the strings conflicted i n whether ranges of characters were enclosed in square hrackcts,
e.g., [a -z] as in A I X , or not, e.g., a-z in BSD. We decided to provide both rfusg/ir and /usr/uch/tr in
this case.

Output Formatting. I n some commands, e.g., df, the output formatting was significantly
different and we had to agree on converged formatting that would give Misuser, and possibly shell
scripts, output in a familiar and usable format. One pervasive aspect of lliisawas lo try to report file
system values in I K byte units where previously there had been mixed usage of 5 12 hyte and IK unit .

5. ADMINISTRATIVE FUNCTIONS

In some cases an administrative function, e.g., BSD's ifconfig, was -provided hy an alternate
A I X function, e.g., netconfig. However it was judged that this function wasrsufficienlly important in
some sense that it be provided. In ihe ifconfig/netconfig case, one program now provides both Ihe old
netconfig interfaces and the traditional BSD ifconfig interfaces. Other admiriistraiivc functions, e.g.,
vmstat and iostat, were missing and considered to be impor tan t we decidecbto add these.

Other administrative functions were very specific to the BSD kerncl:rmplemenlation or lo ihe
BSD file system implementation. Commands wi lh these dependencies wore omitted in the
convergence definition.

6. SUMMARY

The above discussion just gives examples of some of ihe iniercsiing- quesiions that had lo be
addressed. The general definition of the convergence is in ihe documents previously c t l c d [2 - 4 | . The
manual pages i n references 2 and 3 include compatibility discussions, indicating issues relative to hoth
BSD and prior versions of A I X . However, it is intended lhat the above discussion gives a reasonable
understanding of both the breadth and depth of issues addressed in Ihe definit ion. Given ihe historical
difficulties i n resolving BSD and System V conflicts, we were surprised at how Tew fundamentally
unresolvable conflicts were found.

Un t i l the products implementing ihis convergence are generally available, ii is impossible to
really assess the effectiveness of the converged definition in mecling our original objectives. However,
there is much room for optimism. First, there is ihe collective agrecmeni oFthe body of people that
worked on the problem. Second there is the evidence that even the intermediate level of BSD
compatibili ty provided by A I X / R T 2.2.1 is very effective in providing a BSDt-ltke environment. Test
suites originally designed for IBM/4 .3 are being used lo lest 2 .2 .1 , Major programs, e.g., Apollo 's
Network Computing Kernel , which are configurable for compilation/cxcculion in a hoth System V and
BSD environments, are naturally bui l l on A I X 2.2.1 as i f it were really a BSD environment.

REFERENCES:

1. L . K . Loucks and C . H . Sauer, "Advanced Interactive Executive (A I X) Operating System
Overview, " IBM Systems Journal 26, 4 (1987) .

•>Fmim '939. ?0iT c—^sco ' ~2?

2. U3M, " A I X Operating System Commands Reference," to appear.

3. I B M , " A I X Operating System Technical Reference," to appear.

4. I B M , " A I X Family Definition Overview," OC23-2002-0 (July l n S 8) .

5. UC-Berkeley, "Unix User's Manual Reference Guide," Computer Systems Research Group,
University of California, Berkeley (Apr i l 1986).

6. UC-Berkeley, "Unix Programmer's Reference Manual ," Computer Systems Research Group,
University of California, Berkeley (A p r i l 1986).

7. UC-Berkeley, "Unix System Manager's Manuai ," Computer Systems Research Group,
University of California, Berkeley (A p r i l 1986).

8. D .W. Cragun, "Merged BSD and U N I X System V Semantics," Sun Technology I , 1 (Winter
1988).

